
Exam Review
Generics

Checkout Generics project from SVN

}  Informal: no need to dress up
}  Think of it as an internal company

presentation, not a presentation to the public
}  Five-minute presentation, two minutes for

questions, two minutes for transition to next
team

}  Order of teams will be randomly determined
}  Turn in your report at the very beginning of

class
}  Before Thursday, practice getting your

computer to work with a New Olin projector

}  Do a quick demo of your project
◦  Show off any "extra" features or things that work

well
}  What part was your team's biggest challenge?
}  Show one or two interesting code snippets
}  Ask for questions
◦  And ask questions of other teams

}  Before Thursday, practice getting your
computer working with a New Olin projector

}  Exam is Tuesday, Nov. 13 at 1:00 pm
}  Same general format as previous exams
}  Same resources:
◦  Paper/Computer parts: Open book, notes,

computer; course web pages and ANGEL pages, JDK
documentation, programs in YOUR CSSE220
repository

}  Comprehensive, but focused on  
 Chapters 9-18

}  May include problems that make sure you
understand your team's project code

o Simple recursion
o Mutual recursion
o Time-space trade-offs
o Basic search algorithms

o Binary search, linear
search

o Efficiency, best/worst
case inputs

o Big-oh notation,
estimating big-oh
behavior of code

o File I/O, exception
handling

o Function objects
o Linked-list

implementation
o Basic data structure use

and efficiency
o ArrayList, LinkedList,

Stack, Queue,
HashSet, TreeSet,
HashMap, TreeMap

o Multithreading (not locks)

}  Interfaces, polymorphism, inheritance and abstract
classes

}  Exception handling (try, catch, finally, throw, throws)
}  OO design and UML class diagrams
}  Basic sorting algorithm

}  Insertion sort
}  Selection sort
}  Merge sort
}  Big-oh analysis of each

}  Generic programming
}  Event handling, layout managers, exploring the Swing

documentation
}  Your LodeRunner implementation

Another way to make code
more re-useful

}  Java Collections just stored Objects
◦  This was better than creating different collection

classes for each kind of object to be stored
◦  Could put anything in them because of

polymorphism 

}  Used class casts to get the types right:
◦  ArrayList	 songs	 =	 new	 ArrayList();	
songs.add(new	 Song("Dawn	 Chorus",	 "Modern	 English"));	
…	
Song	 s	 =	 (Song)	 songs.get(1);	
◦  songs.add(new	 Artist("A	 Flock	 of	 Seagulls"));	
Song	 t	 =	 (Song)	 songs.get(2);	

Q1 run-time error

}  Can define collections and other classes
using type parameters
◦  ArrayList<Song>	 songs	 =	 new	 ArrayList<Song>();	
songs.add(new	 Song("Dawn	 Chorus",	 "Modern	 English"));	
…	
Song	 s	 =	 songs.get(1);	 //	 no	 cast	 needed	
◦  songs.add(new	 Artist("A	 Flock	 of	 Seagulls"));	

}  Lets us use these classes:
◦  in a variety of circumstances
◦  with strong type checking
◦  without having to write lots of casts

compile-time
error

Q2

}  Create a doubly linked list

}  Include min() and max() methods

}  Use polymorphism rather than null checks for
the start and end of the list

}  Include fromArray() factory method

Q3-Q5

}  Type parameters:
◦  class	 DLList<E>	

}  Bounds:
◦  class	 DLList<E	 extends	 Comparable>	
◦  class	 DLList<E	 extends	 Comparable<E>>	
◦  class	 DLList<E	 extends	 Comparable<?	 super	 E>>	

}  Generic methods:
◦  public	 static	 <T>	 void	 shuffle(T[]	 array)	

}  http://docs.oracle.com/javase/tutorial/java/
generics/index.html	

Q6-7, turn in

